Journal of Nonlinear Analysis and Optimization Vol. 15, Issue. 1, No.1 : 2024 ISSN : **1906-9685** 



## **OPTIMAL RESERVE INVENTORY MODELS FOR THREE CONNECTED MACHINES**

Vivekanandan. T Department of Science and Humanities, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi,Chennnai-600 062,Tamilnadu,India. <sup>1</sup>mtvivek2017@gmail.com,

**C.Ramkumar,** Department of Mathematics, Bharath Institute of Higher Education and Research ,Selaiyur,Chennai-600 073,Tamil Nadu.India.<sup>2</sup>scpram@gmail.com,

**Naresh Kumar Jothi, Vadivelu .V and Senthil Kumar Dayalan** <sup>3,4,5</sup>Department of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamilnadu, India. <sup>3</sup>nareshsastra@yahoo.co.in, <sup>4</sup>shrivadivelu@hmail.com, <sup>5</sup>senthil.d18@gmail.com.

#### **Abstract:**

In the analysis of a system consisting of three machines, namely  $M_1$ ,  $M_2$ , and  $M_3$  arranged in series, the interdependence of their operations is examined. Specifically, the output of machine  $M_1$ serves as the input to  $M_2$ , and the output of  $M_2$  is further processed by  $M_3$ . The maintenance of machine  $M_1$  triggers a cascade effect, causing both  $M_2$  and  $M_3$  to cease operation, resulting in a system-wide idle state and production loss. To mitigate this issue, reserve inventories, denoted as  $S_1$  and  $S_2$ , are strategically placed between  $M_1$  and  $M_2$ , and  $M_2$  and  $M_3$ , respectively. The determination of optimal reserve inventory levels ( $\hat{S_1}$ ) and ( $\hat{S_2}$ ) takes into account associated holding costs and idle time costs. The analysis is conducted under the assumption that machine  $M_1$  undergoes repair, with repair time characterized as a random variable satisfying the SCBZ property. This approach aims to minimize production disruptions and associated costs, offering a solution to enhance overall system efficiency.

Keywords: Optimal Reserves, Repair time, Truncation point, SCBZ property, Leibnitz rule.

#### Introduction

Determining the optimal reserve inventory between the Machines is one of the important concepts prevailed in the inventory control theory. The method of finding the optimal reserve between the Machines find its way back to 19th century. The model initially discussed by Hanssman (1962) in which the author considered a system which contains two Machines in series and the output of Machine M<sub>1</sub> is the input to the Machine M<sub>2</sub>. Whenever the Machine M<sub>1</sub> in the breakdown state, the Machine M<sub>2</sub> will be forced to be in idle state. Hence in order to avoid the disfunction of the Machine  $M_2$ . It is necessary to maintain reserve inventory between the Machines and there are two costs namely, inventory holding cost and idle time cost are involved in this system. In order to balancing out the inventory holding cost and idle time cost, an optimal reserve is needed in between the Machines. In recent research literature, there are many authors have made an attempt to study this type of problem. (2003) have extended two Machine problem into three Machines Rajagobal and Sathivamoorthy and the authors have obtained the optimal reserve inventories between the Machines  $M_1$  and  $M_2$  and the Machines M<sub>2</sub> and M<sub>3</sub>. Govindhan et al. (2016) have discussed the three Machines problem and in which the authors considered a system which contains three Machines such that Machine M<sub>1</sub> at first stage and the Machines  $M_2^a$  and  $M_2^b$  are at second stage. The output and the Machine  $M_1$  is the simultaneous input to the Machines at second stage. Also the authors have assumed that the repair time of Machine M<sub>1</sub> is a random variable which undergoes change of distribution property. With these assumption the optimal reserve inventory was obtained. The change of distribution property is initially

Selvamurugan et al. (2018) have discussed the three Machines model with the assumption that the repair time of Machine  $M_1$  is a random variable, which follows exponential distribution and satisfies the Setting the Clock Back to Zero property. The authors also assumed that the truncation point itself a random variable and it is followed as uniform distribution, and with these assumptions the expression for optimal reserves have been obtained.

The following diagram explains the system of three machines in series.



### **5.2. NOTATIONS**

 $h_1$ : Cost per unit time of holding per unit of reserve inventory  $S_1$ .

h<sub>2</sub>; Cost per unit time of holding per unit of reserve inventory S<sub>2</sub>.

 $d_1$ : Cost per unit time of idle time of machine  $M_2$ .

 $d_2$ : Cost per unit time of idle time of machine  $M_3$ .

 $\mu$  : Mean time interval between successive breakdowns of machine  $M_1$  , assuming exponential distributions of inter-arrival times.

t : Continuous random variable denoting the repair time of  $M_1$  with probability density function g(.) and CDF G (.).

 $r_1$ : Constant consumption rate per unit time of machine  $M_2$  from the reserve  $S_1$ .

 $r_2$ : Constant consumption rate per unit time of machine  $M_3$  from the reserve  $S_2$ .

 $S_1$ : Reserve inventory between  $M_1$  and  $M_2$ .

 $S_2$ : Reserve inventory between  $M_2$  and  $M_3$ .

 $\widehat{S}_1$ :Optimum reserve inventory between M<sub>1</sub> and M<sub>2</sub>.

 $\widehat{S}_2$ :Optimum reserve inventory between M<sub>2</sub> and M<sub>3</sub>.

T : Random variable denoting the idle time of  $M_2$  and  $M_3$ 

## Main Results

This Model is a improvised one over the previous model. In this Model, it is assumed that the repair time of machine  $M_1$  is a random variable and it undergoes change of distribution property in the sense that the repair time changes its probability distribution after a certain change point (truncation point). In doing so, it is assumed that before the truncation point the repair time distribution is exponential and it changes to Erlang(2) after the truncation point. Hence,

$$g(t) = \begin{cases} g_1(t), & t \le x_0 \\ g_2(t), & t > x_0 \end{cases}$$
  

$$g_2(t) = \overline{G_1(x_0)}, & g_2(t - x_0) \\ g_1(t) = \begin{cases} g_1(t) = \theta_1 e^{-\theta_1 t} \\ g_2(t) = e^{-\theta_1 x_0} \theta_2^2(t - x_0) e^{-\theta_2(t - x_0)} \\ , & \text{if } t > X_0 \end{cases}$$

If  $X_0$  is a random variable denoting that truncation point and it is assumed to be followed as exponential with parameter  $\lambda$ , then the probability density function of the repair time can be written as  $g(t) = g_1(t)P[t \le x_0] + g_2(t)P[t > x_0]$  (1)  $g(t) = \theta_1 e^{-\theta_1 t} e^{-\lambda t} + \int_0^t e^{-\theta_1 x_0} \theta_2^2(t - x_0) e^{-\theta_2(t - x_0)} \lambda e^{-\lambda x_0} dx_0$ 

Hence, it may be observed that the expected idle time of the machine  $M_2$  and  $M_3$  are

$$T_{M_{2}=} \begin{cases} 0 , ift \leq \frac{S_{1}}{r_{1}} \\ t - \frac{S_{1}}{r_{1}} , ift > \frac{S_{1}}{r_{1}} \end{cases}$$

$$T_{M_{3}=} \begin{cases} t - \frac{S_{1}}{r_{1}} - \frac{S_{2}}{r_{2}}, & t > \left(\frac{S_{1}}{r_{1}} + \frac{S_{2}}{r_{2}}\right) \\ 0, & t \leq \left(\frac{S_{1}}{r_{1}} + \frac{S_{2}}{r_{2}}\right) \end{cases}$$

Thus, the total expected cost is given as  $E(C) = h_{1}S_{1} + h_{2}S_{2} + \frac{d_{1}}{\mu} \{E(T_{M_{2}})\} + \frac{d_{2}}{\mu} \{E(T_{M_{3}})\}$ (2)  $E(T_{M_{2}}) = \int_{\frac{S_{1}}{r_{1}}}^{\infty} \left(t - \frac{s_{1}}{r_{1}}\right) g(t) dt$   $= \int_{\frac{S_{1}}{r_{1}}}^{\infty} \left(t - \frac{s_{1}}{r_{1}}\right) \left\{\theta_{1}e^{-\theta_{1}t}e^{-\lambda t} + \int_{0}^{t}e^{-\theta_{1}x_{0}}\theta_{2}^{-2}(t-t_{0})e^{-\theta_{2}(t-x_{0})} \lambda e^{-\lambda x_{0}} dx_{0}\right\} dt$   $E(T_{M_{2}}) = I_{1} + \frac{\lambda \theta_{2}^{2}}{(\lambda + \theta_{1} - \theta_{2})} \int_{\frac{S_{1}}{r_{1}}}^{\infty} t\left(t - \frac{S_{1}}{r_{1}}\right)e^{-\theta_{2}t} dt + \frac{\lambda \theta_{2}^{2}}{(\lambda + \theta_{1} - \theta_{2})^{2}} \int_{\frac{S_{1}}{r_{1}}}^{\infty} \left(t - \frac{s_{1}}{r_{1}}\right)e^{-t(\lambda + \theta_{1})} dt$   $- \frac{\lambda \theta_{2}^{2}}{(\lambda + \theta_{1} - \theta_{2})^{2}} \int_{\frac{S_{1}}{r_{1}}}^{\infty} \left(t - \frac{S_{1}}{r_{1}}\right)e^{-\theta_{2}t} dt$   $E(T_{M_{2}}) = I_{1} + I_{2} + I_{3} - I_{4}$ (3)  $E(T_{M_{3}}) = \int_{\frac{S_{1}+\frac{S_{2}}{r_{1}+\frac{S_{2}}{r_{2}}}}^{\infty} \left(t - \frac{S_{1}}{r_{1}} - \frac{S_{2}}{r_{2}}\right)g(t) dt$   $E(T_{M_{3}}) = \int_{5} + \frac{\theta_{2}^{2}\lambda}{(\lambda + \theta_{1} - \theta_{2})^{2}} \int_{\frac{S_{1}+\frac{S_{2}}{r_{1}+\frac{S_{2}}{r_{2}}}}^{\infty} \left(t - \frac{S_{1}}{r_{1}} - \frac{S_{2}}{r_{2}}\right)e^{-t(\lambda + \theta_{1})} dt$   $- \frac{\theta_{2}^{2}\lambda}{(\lambda + \theta_{1} - \theta_{2})^{2}} \int_{\frac{S_{1}+\frac{S_{2}}{r_{1}+\frac{S_{2}}{r_{2}}}}^{\infty} \left(t - \frac{S_{1}}{r_{1}} - \frac{S_{2}}{r_{2}}\right)e^{-t(\lambda + \theta_{1})} dt$ 

 $-\frac{\theta_{2}^{2}\lambda}{(\lambda+\theta_{1}-\theta_{2})^{2}}\int_{\frac{S_{1}}{r_{1}}+\frac{S_{2}}{r_{2}}}^{\infty}\left(t-\frac{S_{1}}{r_{1}}-\frac{S_{2}}{r_{2}}\right)e^{-t\theta_{2}}dt$   $E(T_{M_{3}}) = I_{5} + I_{6} - I_{7} \qquad (4)$ It can be rewritten as  $E(C) = h_{1}S_{1} + h_{2}S_{2} + \frac{d_{1}}{\mu}\left\{E(T_{M_{2}})\right\} + \frac{d_{2}}{\mu}\left\{E(T_{M_{3}})\right\}$   $\frac{dE(C)}{dS_{1}} = 0$   $\Rightarrow h_{1} + \frac{d_{1}}{\mu}\left\{\frac{dE(T_{M_{2}})}{dS_{1}}\right\} + \frac{d_{2}}{\mu}\left\{\frac{dE(T_{M_{3}})}{dS_{1}}\right\} = 0$   $\Rightarrow h_{1} + \frac{d_{1}}{\mu}\left\{\frac{dI_{1}}{dS_{1}} + \frac{dI_{2}}{dS_{1}} + \frac{dI_{3}}{dS_{1}} - \frac{dI_{4}}{dS_{1}}\right\} + \frac{d_{2}}{\mu}\left\{\frac{dI_{5}}{dS_{1}} + \frac{dI_{6}}{dS_{1}} - \frac{dI_{7}}{dS_{1}}\right\} = 0 \qquad (5)$ From (3)

86

$$\frac{dE(T_{M_2})}{dS_1} = \frac{dI_1}{dS_1} + \frac{dI_2}{dS_1} + \frac{dI_3}{dS_1} - \frac{dI_4}{dS_1} \\
\frac{dI_1}{dS_1} = \frac{d}{dS_1} \int_{\frac{S_1}{r_1}}^{\infty} \theta_1 \left( t - \frac{S_1}{r_1} \right) e^{-t(\lambda+\theta_1)} dt \\
\frac{dI_1}{dS_1} = -\frac{\theta_1 e^{-\frac{S_1}{r_1}(\lambda+\theta_1)}}{r_1(\lambda+\theta_1)} \tag{6}$$

$$\frac{dI_2}{dS_1} = \frac{d}{dS_1} \left( \frac{\lambda \theta_2^2}{\lambda + \theta_1 - \theta_2} \right) \int_{\frac{S_1}{r_1}}^{\infty} t \left( t - \frac{S_1}{r_1} \right) e^{-\theta_2 t} dt \\
\frac{dI_3}{dS_1} = -\frac{\lambda \theta_2^2}{r_1(\lambda+\theta_1 - \theta_2)^2} \left\{ \left( \frac{S_1}{r_1 \theta_2} e^{-\theta_2 \frac{S_1}{r_1}} + \frac{1}{\theta_2^2} e^{-\theta_2 \frac{S_1}{r_1}} \right) \right\} \tag{7}$$

$$\frac{dI_3}{dS_1} = -\frac{\lambda \theta_2^2}{r_1(\lambda+\theta_1 - \theta_2)^2} \left[ \frac{e^{-\frac{S_1}{r_1}(\lambda+\theta_1)}}{r_1} \right] \\
\frac{dI_4}{dS_1} = -\frac{\lambda \theta_2^2}{(\lambda+\theta_1 - \theta_2)^2} \left[ \frac{e^{-\frac{S_1}{r_1}(\lambda+\theta_1)}}{r_1} \right] \end{aligned}$$

$$\tag{8}$$

$$\frac{dI_4}{dS_1} = -\frac{\lambda \theta_2^2}{(\lambda+\theta_1 - \theta_2)^2} \frac{e^{-\frac{S_1}{r_1}\theta_2}}{r_1\theta_2} \tag{9}$$

$$\frac{dE(T_{M_2})}{dS_1} = -\theta_1 \frac{e^{-\frac{S_1}{r_1}(\lambda+\theta_1)}}{r_1(\lambda+\theta_1)} - \frac{\lambda\theta_2^2 \frac{S_1}{r_1} e^{-\frac{S_1}{r_1}\theta_2}}{r_1\theta_2(\lambda+\theta_1-\theta_2)} - \frac{\lambda\theta_2^2 e^{-\frac{S_1}{r_1}\theta_2}}{r_1\theta_2^2(\lambda+\theta_1-\theta_2)} - \frac{\lambda\theta_2^2 e^{-\frac{S_1}{r_1}\theta_2}}{r_1\theta_2^2(\lambda+\theta_1-\theta_2)} + \frac{\lambda\theta_2^2 e^{-\frac{S_1}{r_1}(\lambda+\theta_1)}}{r_1(\lambda+\theta_1-\theta_2)^2(\lambda+\theta_1)} + \frac{\lambda\theta_2^2}{(\lambda+\theta_1-\theta_2)^2r_1\theta_2} e^{-\frac{S_1}{r_1}\theta_2}$$
(10)

From (4)

$$\begin{split} \frac{dI_5}{dS_1} &= \frac{d}{ds_1} \left( \theta_1 \int_{\frac{S_1 + \frac{S_2}{r_1}}{r_1 + \frac{S_2}{r_2}}}^{\infty} \left( t - \frac{S_1}{r_1} - \frac{S_2}{r_2} \right) e^{-t(\lambda + \theta_1)} dt \right) \\ \frac{dI_5}{dS_1} &= -\frac{\theta_1 e^{-\left(\frac{S_1 + S_2}{r_1}\right)(\lambda + \theta_1)}}{r_1(\lambda + \theta_1)} \\ \frac{dI_6}{dS_1} &= \frac{d}{ds_1} \left( \frac{\theta_2^{2\lambda}}{(\lambda + \theta_1 - \theta_2)^2} \int_{\frac{S_1 + S_2}{r_1}}^{\infty} \left( t - \frac{S_1}{r_1} - \frac{S_2}{r_2} \right) e^{-t(\lambda + \theta_1)} dt \right) \\ \frac{dI_6}{dS_1} &= \frac{-\theta_2^{2\lambda} e^{-\left(\frac{S_1 + S_2}{r_1}\right)(\lambda + \theta_1)}}{r_1(\lambda + \theta_1 - \theta_2)^2(\lambda + \theta_1)} \\ \frac{dI_7}{dS_1} &= \frac{\theta_2^{2\lambda}}{(\lambda + \theta_1 - \theta_2)^2} \int_{\frac{S_1 + S_2}{r_1}}^{\infty} \left( t - \frac{S_1}{r_1} - \frac{S_2}{r_2} \right) e^{-\theta_2 t} dt \\ \frac{dI_7}{dS_1} &= \frac{\theta_2^{2\lambda}}{(\lambda + \theta_1 - \theta_2)^2} \frac{e^{-\left(\frac{S_1 + S_2}{r_1} + \frac{S_2}{r_2}\right)\theta_2}}{r_1\theta_2} \\ \text{Hence,} \end{split}$$

88 **JNAO** Vol. 15, Issue. 1, No.1 : 2024  

$$\frac{dE(T_{M_3})}{dS_1} = -\frac{\theta_1 e^{-\left(\frac{S_1}{r_1} + \frac{S_2}{r_2}\right)(\lambda + \theta_1)}}{r_1(\lambda + \theta_1)} - \frac{\theta_2^2 \lambda e^{-\left(\frac{S_1}{r_1} + \frac{S_2}{r_2}\right)(\lambda + \theta_1)}}{r_1(\lambda + \theta_1 - \theta_2)^2(\lambda + \theta_1)} + \frac{\theta_2^2 \lambda}{(\lambda + \theta_1 - \theta_2)^2} \frac{e^{-\left(\frac{S_1}{r_1} + \frac{S_2}{r_2}\right)\theta_2}}{r_1\theta_2}}{r_1\theta_2}$$
(11)  

$$\frac{dE(C)}{dS_1} = 0 + h_1 + \frac{d_1}{\mu} \left\{ \frac{dE(T_{M_2})}{dS_1} \right\} + \frac{d_2}{\mu} \left\{ \frac{dE(T_{M_3})}{dS_1} \right\} = 0$$
(12)

(12)

$$=h_{1} + \frac{d_{1}}{\mu} \Biggl\{ -\theta_{1} \frac{e^{-\frac{S_{1}}{r_{1}}(\lambda+\theta_{1})}}{r_{1}(\lambda+\theta_{1})} - \frac{\lambda\theta_{2}^{2} \frac{S_{1}}{r_{1}} e^{-\frac{S_{1}}{r_{1}}\theta_{2}}}{r_{1}\theta_{2}(\lambda+\theta_{1}-\theta_{2})} - \frac{\lambda\theta_{2}^{2} e^{-\frac{S_{1}}{r_{1}}\theta_{2}}}{r_{1}\theta_{2}^{2}(\lambda+\theta_{1}-\theta_{2})} - \frac{\lambda\theta_{2}^{2} e^{-\frac{S_{1}}{r_{1}}\theta_{2}}}{r_{1}\theta_{2}^{2}(\lambda+\theta_{1}-\theta_{2})} \Biggr\} - \frac{\lambda\theta_{2}^{2} e^{-\frac{S_{1}}{r_{1}}(\lambda+\theta_{1})}}{r_{1}(\lambda+\theta_{1}-\theta_{2})^{2}(\lambda+\theta_{1})} + \frac{\lambda\theta_{2}^{2}}{(\lambda+\theta_{1}-\theta_{2})^{2}r_{1}\theta_{2}} e^{-\frac{S_{1}}{r_{1}}\theta_{2}}} \Biggr\} + \frac{d_{2}}{\mu} \Biggl\{ -\frac{\theta_{1} e^{-\left(\frac{S_{1}}{r_{1}}+\frac{S_{2}}{r_{2}}\right)(\lambda+\theta_{1})}}{r_{1}(\lambda+\theta_{1})} - \frac{\theta_{2}^{2}\lambda e^{-\left(\frac{S_{1}}{r_{1}}+\frac{S_{2}}{r_{2}}\right)(\lambda+\theta_{1})}}{r_{1}(\lambda+\theta_{1}-\theta_{2})^{2}(\lambda+\theta_{1})} + \frac{\theta_{2}^{2}\lambda}{(\lambda+\theta_{1}-\theta_{2})^{2}(\lambda+\theta_{1})} = 0$$
(13)

And in similar way, 
$$\frac{dE(t)}{dS_2} = \mathbf{0}$$
  
 $\Rightarrow h_2 + \frac{d_1}{\mu} \left\{ \frac{dE(T_{M_2})}{dS_2} \right\} + \frac{d_2}{\mu} \left\{ \frac{dE(T_{M_3})}{dS_2} \right\} = 0$  (14)  
 $\Rightarrow h_2 + \frac{d_1}{\mu} \left\{ \frac{dI_1}{dS} + \frac{dI_2}{dS} + \frac{dI_3}{dS} - \frac{dI_4}{dS} \right\} + \frac{d_2}{\mu} \left\{ \frac{dI_5}{dS} + \frac{dI_6}{dS} - \frac{dI_7}{dS} \right\} = 0$  (15)

$$\Rightarrow h_{2} + \frac{1}{\mu} \left\{ \frac{1}{ds_{2}} + \frac{1}{ds_{2}} + \frac{1}{ds_{2}} - \frac{1}{ds_{2}} \right\} + \frac{1}{2} \left\{ \frac{1}{ds_{2}} + \frac{1}{ds_{2}} - \frac{1}{ds_{2}} \right\} = 0$$
(1)
Since S<sub>2</sub> is not involved in  $\frac{dE(T_{M_{2}})}{ds_{2}}$ 

Hence, 
$$\frac{dE(T_{M_2})}{dS_2} = 0$$
 (16)  
 $\frac{dE(T_{M_3})}{dS_2} = \frac{dI_5}{dS_2} + \frac{dI_6}{dS_2} - \frac{dI_7}{dS_2}$  (17)  
 $\frac{dI_5}{dS_2} = \frac{d}{dS_2} \left( \theta_1 \int_{\frac{S_1 + S_2}{r_1 + r_2}}^{\infty} \left( t - \frac{S_1}{r_1} - \frac{S_2}{r_2} \right) e^{-t(\lambda + \theta_1)} dt \right)$   
 $\frac{dI_5}{dS_2} = -\frac{\theta_1 e^{-\left(\frac{S_1 + S_2}{r_1 + r_2}\right)(\lambda + \theta_1)}}{r_2(\lambda + \theta_1)}$   
 $\frac{dI_6}{dS_2} = \frac{d}{dS_2} \left( \frac{\theta_2^2 \lambda}{(\lambda + \theta_1 - \theta_2)^2} \int_{\frac{S_1 + S_2}{r_1 + r_2}}^{\infty} \left( t - \frac{S_1}{r_1} - \frac{S_2}{r_2} \right) e^{-t(\lambda + \theta_1)} dt \right)$   
 $= \frac{dI_6}{dS_2} = \frac{-\theta_2^2 \lambda e^{-\left(\frac{S_1 + S_2}{r_1 + r_2}\right)(\lambda + \theta_1)}}{r_2(\lambda + \theta_1 - \theta_2)^2(\lambda + \theta_1)}$ 

$$\frac{dI_7}{dS_2} = \frac{d}{ds_2} \left( \frac{\theta_2^2 \lambda}{(\lambda + \theta_1 - \theta_2)^2} \int_{\frac{s_1}{r_1} + \frac{s_2}{r_2}}^{\infty} \left( t - \frac{s_1}{r_1} - \frac{s_2}{r_2} \right) e^{-\theta_2 t} dt \right)$$

$$\frac{dI_7}{dS_2} = -\frac{\theta_2^2 \lambda}{(\lambda + \theta_1 - \theta_2)^2} \frac{e^{-\left(\frac{s_1}{r_1} + \frac{s_2}{r_2}\right)\theta_2}}{r_2\theta_2}}{\frac{dE(T_{M_3})}{dS_2}} = \frac{dI_5}{dS_1} + \frac{dI_6}{dS_1} - \frac{dI_7}{dS_1}$$
Hence,
$$\frac{dE(T_{M_3})}{dS_2} = -\frac{\theta_1 e^{-\left(\frac{s_1}{r_1} + \frac{s_2}{r_2}\right)(\lambda + \theta_1)}}{r_2(\lambda + \theta_1)} - \frac{\theta_2^2 \lambda e^{-\left(\frac{s_1}{r_1} + \frac{s_2}{r_2}\right)(\lambda + \theta_1)}}{r_2(\lambda + \theta_1 - \theta_2)^2(\lambda + \theta_1)} + \frac{\theta_2^2 \lambda}{(\lambda + \theta_1 - \theta_2)^2} \frac{e^{-\left(\frac{s_1}{r_1} + \frac{s_2}{r_2}\right)\theta_2}}{r_2\theta_2}}{(18)}$$

Substituting (16) and (18) in (14) the resultant equation is (5 + 5)

$$\Rightarrow h_{2} + \frac{d_{1}}{\mu} \{0\} + \frac{d_{2}}{\mu} \left\{ -\frac{\theta_{1} e^{-\left(\frac{S_{1}}{r_{1}} + \frac{S_{2}}{r_{2}}\right)(\lambda + \theta_{1})}}{r_{2}(\lambda + \theta_{1})} - \frac{\theta_{2}^{2} \lambda e^{-\left(\frac{S_{1}}{r_{1}} + \frac{S_{2}}{r_{2}}\right)(\lambda + \theta_{1})}}{r_{2}(\lambda + \theta_{1} - \theta_{2})^{2}(\lambda + \theta_{1})} + \frac{\theta_{2}^{2} \lambda}{(\lambda + \theta_{1} - \theta_{2})^{2}} \frac{e^{-\left(\frac{S_{1}}{r_{1}} + \frac{S_{2}}{r_{2}}\right)\theta_{2}}}{r_{2}\theta_{2}}}{r_{2}\theta_{2}} \right\} = 0$$
(19)

Solving the (13) and (19) the resultant equation is

$$h_{1}r_{1} - h_{2}r_{2} + \frac{d_{1}}{\mu} \Biggl\{ -\theta_{1} \frac{e^{-\frac{s_{1}}{r_{1}}(\lambda+\theta_{1})}}{(\lambda+\theta_{1})} - \frac{\lambda\theta_{2}^{2}\frac{s_{1}}{r_{1}}e^{-\frac{s_{1}}{r_{1}}\theta_{2}}}{\theta_{2}(\lambda+\theta_{1}-\theta_{2})} - \frac{\lambda\theta_{2}^{2}e^{-\frac{s_{1}}{r_{1}}\theta_{2}}}{\theta_{2}^{2}(\lambda+\theta_{1}-\theta_{2})} - \frac{\lambda\theta_{2}^{2}e^{-\frac{s_{1}}{r_{1}}\theta_{2}}}{(\lambda+\theta_{1}-\theta_{2})^{2}(\lambda+\theta_{1})} + \frac{\lambda\theta_{2}^{2}}{(\lambda+\theta_{1}-\theta_{2})^{2}\theta_{2}}e^{-\frac{s_{1}}{r_{1}}\theta_{2}}}\Biggr\}$$

$$(20)$$

Using the equations (19) and (20) numerically by taking fixed values for  $h_1$ ,  $h_2$ ,  $r_1$ ,  $r_2$ ,  $d_1$ ,  $d_2$ ,  $\mu$ ,  $\lambda$ ,  $\theta_1$  and  $\theta_2$  the optimal value of  $\hat{S}_1$  and  $\hat{S}_2$  can be obtained.

# **Numerical Illustrations**

The variations, in the values of  $\widehat{S}_1$  and  $\widehat{S}_2$ , consequent to the changes in the parameter  $h_1$ ,  $h_2$ ,  $r_1$ ,  $r_2$ ,  $d_1$ ,  $d_2$ ,  $\mu$ ,  $\lambda$ ,  $\theta_1$  and  $\theta_2$  have been studied by taking the numerical illustrations. The tables and the corresponding graphs are given below.

#### Case (i)

89

Since the holding cost h<sub>1</sub> is related to S<sub>1</sub>, for the fixed values of  $h_2 = 10$ ,  $d_1 = 50$ ,  $d_2 = 60$ ,  $r_1 = 2$ ,  $r_2 = 2$ ,  $\theta_{1,=1,2}$ ,  $\theta_{2,=1,2}$   $\mu = 1.0$  and  $\lambda = 1$ . The variations, in the values of the optimal reserve inventory  $\widehat{S_1}$  for various values of h<sub>1</sub>, is shown in the table.

# The Behaviour of optimal reserve inventory for the changes in the value of holding cost of M<sub>1</sub>

| value of holding cost of MI |        |        |        |        |  |  |
|-----------------------------|--------|--------|--------|--------|--|--|
| <b>h</b> 1                  | 29     | 30     | 31     | 32     |  |  |
| $\widehat{S_1}$             | 0.4659 | 0.3776 | 0.2941 | 0.2149 |  |  |



The Behaviour of optimal reserve inventory for the changes in the values of holding cost of M<sub>1</sub>

#### Case (ii)

The fixed values of  $h_1 = 30$ ,  $d_1 = 50$ ,  $d_2 = 60$ ,  $r_1 = 2$ ,  $r_2 = 2$ ,  $\theta_1 = 1.2$ ,  $\theta_2 = 1.2$ ,  $\mu = 1.0$  and  $\lambda = 1$ , and the variations, in the values of the optimal reserve inventory  $\widehat{S}_2$  for various values of  $h_2$  are shown in the table.

The Behaviour of optimal reserve inventory for the changes in the value of holding cost of M<sub>2</sub>

| h <sub>2</sub>  | 9      | 10     | 11     | 12     |
|-----------------|--------|--------|--------|--------|
| $\widehat{S_2}$ | 1.8564 | 1.5752 | 1.3094 | 1.0547 |



The Behaviour of optimal reserve inventory for the changes in the value of holding cost of M<sub>2</sub>

Case (iii)

The fixed values of  $h_1 = 30$ ,  $h_2 = 10$ ,  $d_2 = 60$ ,  $r_1 = 2$ ,  $r_2 = 2$ ,  $\theta_{1,2} = 1.2$ ,  $\mu = 1.0$  and  $\lambda = 1$ , and the variations, in the values of the optimal reserve inventory  $\widehat{S}_1$  and  $\widehat{S}_2$  for various values of  $d_1$ , are shown in the table.

The Behaviour of optimal reserve inventory for the changes in the values of idle time cost of Machine M<sub>2</sub>

| $d_1$           | 50     | 60     | 70     | 80     |
|-----------------|--------|--------|--------|--------|
| $\widehat{S_1}$ | 0.3776 | 0.694  | 0.9669 | 1.2067 |
| $\widehat{S}_2$ | 1.5752 | 1.2588 | 0.9859 | 0.7461 |



The Behaviour of optimal reserve inventory for the changes in the values of idle time cost of Machine M<sub>2</sub>

Case (iv)

The fixed values of  $h_1 = 30$ ,  $h_2 = 10$ ,  $d_1 = 50$ ,  $r_1 = 2$ ,  $r_2 = 2$ ,  $\theta_{1,2} = 1.2$ ,  $\mu = 1.0$  and  $\lambda = 1$ , and the variations in the values of the optimal reserve inventory  $\widehat{S}_2$  for various values of  $d_2$ , are shown in the table.

| <b>Fhe Behaviour of op</b> | timal reserve | inventory              | for the | changes i | in the |
|----------------------------|---------------|------------------------|---------|-----------|--------|
|                            | value of idle | time of M <sub>3</sub> |         |           |        |

| d <sub>2</sub>  | 60     | 70     | 80     | 90     |
|-----------------|--------|--------|--------|--------|
| $\widehat{S_2}$ | 1.5752 | 1.8648 | 2.1179 | 2.3426 |

91



The Behaviour of optimal reserve inventory for the changes in the value of idle time of M<sub>3</sub>

#### Case (v)

The fixed values of  $h_1 = 30$ ,  $h_2 = 10$ ,  $d_1 = 50$ ,  $d_2 = 60$ ,  $r_1 = 2$ ,  $r_2 = 2$ ,  $\theta_{1,=1,2}$ ,  $\theta_{2,=1,2}$  and  $\lambda = 1$ , and the variations, in the values of the optimal reserve inventory  $\widehat{S}_1$  and  $\widehat{S}_2$  for various values of  $\mu$  are shown in the table.

The Behaviour of optimal reserve inventory for the changes in the value of mean interval breakdown of M<sub>1</sub>

| μ               | 0.9    | 1.0    | 1.1    | 1.2    |
|-----------------|--------|--------|--------|--------|
| $\widehat{S_1}$ | 0.5596 | 0.3776 | 0.2149 | 0.0682 |
| $\widehat{S_2}$ | 1.5909 | 1.5752 | 1.5604 | 1.5461 |



TheBehaviour of optimal reserve inventory for the changes in the value of mean interval breakdown of M<sub>1</sub>

## Conclusions

From the tables and graphs, it is observed that

- i) As the inventory holding cost 'h<sub>1</sub>' increases, the value of  $\widehat{S_1}$  decreases suggesting a smaller reserve between the Machines M<sub>1</sub> and M<sub>2</sub>.
- ii) If the inventory holding cost 'h<sub>2</sub>' increases, the value of  $\widehat{S}_2$  will decreases to suggest smaller reserve between the Machines M<sub>2</sub> and M<sub>3</sub>.
- iii) If the d<sub>1</sub> of the idle time cost of Machine M<sub>2</sub> increases, a higher level o  $\widehat{S_1}$  f is suggested. However, the  $\widehat{S_2}$  is found to be decreased due to the reason that the optimal reserve  $\widehat{S_2}$  is more, as it supports the Machines M<sub>2</sub> and M<sub>3</sub>.
- iv) As the d<sub>2</sub> idle time cost of inventory increases a larger inventory of  $\widehat{S}_1$  is suggested.
- v) As the parameter  $\mu$ , the mean inter-arrival time between successive breakdowns of Machines M<sub>1</sub> is in increase then the optimal reserve inventories are in decrease. It suggested to have smaller inventories of  $\widehat{S_1}$  and  $\widehat{S_2}$

## REFERENCES

- 1. Hanssmann, F 1962, 'Operations Research in Production and inventory control', John Wiley and sons, vol. 9, pp. 294-295, Inc, New York.
- 2. Harris FW 1915, 'Operations and Cost', A. W. Shaw Company, Chicago, pp. 48-54.
- 3. Harris FW 1915, 'What Quantity to Make at Once. In the Library of Factory Management', Operation and Costs. A. W. Shaw Company, Chicago, vol. V, pp. 47-52.
- 4. Henry, L, Ramathilakam, S and Sachithanantham, S 2014, 'A model for optimal reserve inventory between two machines in series with repair time undergoes a parametric change', International journal of Ultra Scientist for Physical Sciences, vol. 26, no. 3B, pp. 227-237.
- 5. Henry, L, Ramathilakam, S and Sachithanantham, S 2016, 'Optimal reserve inventory between two machines with repair time having SCBZ property reference to truncation point of the repair time', ActaCienciaIndica, vol. XLII M, no. 3, pp. 227-236.
- 6. Ramanarayanan, R, Ramachandran, V and Sathiyamoorthi, R 1998, 'Base stock system for patient customers when interarrival times of demands are dependent', ASR.vol.2, no.1, pp.1-6.
- 7. Ramathilagam, S, Henry,L and Sachithanantham, S 2014, 'A model for optimal Reserve inventory between two machines in series with repair time undergoes a parametric change', Ultra scientist, vol.26, no. 3, pp.227-237.
- 8. Ranga, V, Ramasesh, J, Keith Ord, Jack C, Hayya and Andrew Pan 1993, 'Sole versus oval sourcing in stochastic lead time (s, Q) Inventory Models', Management Science, vol.37, no.4, pp. 428-443.
- 9. Sachithanantham, S and Jagatheesan, R (2018)'A model for determining the optimal Base Stock level when the lead time has a change of distribution property'. International Journal of Research in Advent Technology, Vol. 6, No. 8, pp.2019-2027.
- 10. Sachithanantham, S, Ganesan, V and Sathiyamoorthi, R 2007, 'A model for Optimal Reserve inventory Between Two Machines in Series', Journal of Indian Acad. Math, vol. 29, no. 1, pp. 59-70.
- 11. Sachithanantham, S, Ganesan, V and Sathiyamoorthi, R 2008, 'A model of Base Stock system for patient customers with lead time distribution undergoing parametric change', Journal of Ultra scientist of physical sciences, vol. 20, no. 3, pp.116-119.
- 12. Sachithanantham, S, Ganesan, V and Sathiyamoorthy, R 2008, 'A model of base stock system for patient customers with lead time distribution undergoing a parametric change', International journal of Ultra Scientist for Physical Sciences, vol. 20, no. 3, pp. 651-658.
- 13. Sachithanantham, S, Ganesan,V and Sathiyamoorthi, R 2006, 'Optimal Reserves for Two Machines with Repair time having SCBZ Property', Bulletin of Pure and Applied Sciences, vol. 25E, no. 2, pp. 287-297.

93

- 14. Sandeep Jain, Srinivasa NR and Raghavan 2005, 'Analysis of Base-Stock controlled production Queueing Models', Proceedings of the IEEE, pp. 37-40.
- 15. SehikUduman, PS, Sulaiman, A and Sathiyamoorthi, R 2008, 'A Stochastic Model for Reserve Inventory between two machines in series', Applied Mathematica Sciences, vol. LXVII, no. 1-2, pp.15-22.
- 16. Shirajul Islam Ukil and Sharif Uddin, MD 2016, 'A production inventory model of constant production rate demand of level dependent linear trend', American Journal of Operations Research, vol. 6, pp. 61-70.
- 17. Song, JS 1994, 'The effect of lead time uncertainty in a simple stochastic inventory model', Management Science, vol.40, no. 5, pp. 603-613.
- 18. Srinivasan, S, Sulaiman, A and Sathiyamoorthi, R 2007, 'Optimal reserve inventory between two machines under SCBZ property of interarrival times between break downs', International Journal of Physical Sciences-Ultra Science vol. 19(2)M, pp. 261-266.
- 19. Srinivasan, S, Sulaiman, A and Sathiyamoorthi, R 2007a, 'On the Determination of Optimal Inventory with Demand distribution as order statistics', Bulletin of Pure and Applied Sciences, pp. 25-32.
- 20. Stangl, DK 1995, 'Exponential change point model', Statistics in Medicine, vol. 14, pp. 2173-2190.
- 21. Stephen, C and Graves 1999, 'A single Item Inventory Model for a Non-stationary demand process', Manufacturing Service Operations Management, vol. 1, no. 1, pp. 59-69.
- 22. Suresh Kumar, R 2006, 'Shock Model when the threshold has a change of Distribution after a change point', Journal of Indian Acada Math, vol. 28, no.1, pp. 73-84.
- 23. Sven Axsater 1996, 'Using the deterministic EOQ formula in stochastic inventory control', Management Science, vol. 42, no. 6, pp. 830-834.
- 24. Thangaraj, V and Ramanarayanan, R 1983, 'An Operating Policy in Inventory Systems with Random Lead Times and Unit Demands', Math. Operations for Sch. U. Statist. Ser. Optim, vol. 14, pp. 111-124.
- 25. Veinott, AF and Wagner, H 1965, 'Computing optimal (s,S) inventory policies', Management science, vol. 11, pp. 525-552.
- 26. Venkatesan, T, Muthu, C and Sathiyamoorthy, R 2016, 'determination of optimal reserve between three machines in series', International Journal of Advanced Research in Mathematics and Applications, vol. 1, no. 1, pp. 74-82.