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Abstract: 

                 In the analysis of a system consisting of three machines, namely M1, M2, and M3 arranged 

in series, the interdependence of their operations is examined. Specifically, the output of machine M1 

serves as the input to M2, and the output of M2 is further processed by M3. The maintenance of machine 

M1 triggers a cascade effect, causing both M2 and M3 to cease operation, resulting in a system-wide 

idle state and production loss. To mitigate this issue, reserve inventories, denoted as S1 and S2, are 

strategically placed between M1 and M2, and M2 and M3, respectively. The determination of optimal 

reserve inventory levels (𝑆1̂) and (𝑆2̂)̂ takes into account associated holding costs and idle time costs. 

The analysis is conducted under the assumption that machine M1 undergoes repair, with repair time 

characterized as a random variable satisfying the SCBZ property. This approach aims to minimize 

production disruptions and associated costs, offering a solution to enhance overall system efficiency. 
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Introduction  

        Determining the optimal reserve inventory between the Machines is one of the important concepts 

prevailed in the inventory control theory. The method of finding the optimal reserve between the 

Machines find its way back to 19th century. The model initially discussed by Hanssman  (1962) in 

which the author considered a system which contains  two Machines  in series and the output of 

Machine M1 is the input to the Machine M2.Whenever the Machine M1 in the breakdown state, the 

Machine M2 will be forced to be in idle state. Hence in order to avoid the disfunction of the Machine 

M2. It is necessary to maintain reserve inventory between the Machines and there are two costs namely, 

inventory holding cost and idle time cost are involved in this system.  In order to balancing out the 

inventory holding cost and idle time cost, an optimal reserve is needed in between the Machines. In 

recent research literature, there are many authors have made  an attempt to study this type of problem. 

Rajagobal and Sathiyamoorthy       (2003) have extended two Machine problem into three Machines 

and the authors have obtained the optimal reserve inventories between the Machines M1 and  M2 and 

the Machines M2 and M3. Govindhan et al. (2016) have discussed the three Machines problem and in 

which the authors considered a system which contains three Machines such that Machine M1 at first 

stage and the Machines M2
a and M2

b are at second stage. The output and the Machine M1 is the 

simultaneous input to the Machines at second stage. Also the authors have assumed that the repair time 

of Machine M1 is a random variable which undergoes change of distribution property. With these 

assumption the optimal reserve inventory was obtained. The change of distribution property is initially 
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discussed by Stangl (1995). Venkatesan et al. (2016) have discussed the model for determining the 

optimal reserves between three Machines in series. In this model the authors have considered a system 

which consists three Machines in series and the output of Machine M1 is the input to Machine M2 and 

the output of the Machine M2 is input to the Machine M3.It is also assumed that the Machines M2 and 

M3 will be in up state during the breakdown of the Machine M1. Hence in order to maintain the system 

be alive, the reserve inventories are to be maintained between the Machines M1 and M2 and M2 and 

M3. Under these conceptualization, the authors have obtained the optimal reserves with the assumption 

that the repair time of Machine M1 is a random variable. 

          Selvamurugan et al. (2018) have discussed the three Machines model with the assumption that 

the repair time of Machine M1 is a random variable, which follows exponential distribution and 

satisfies the Setting the Clock Back to Zero property. The authors also assumed that the truncation 

point itself a random variable and it is followed as uniform distribution, and with these assumptions 

the expression for optimal reserves have been obtained. 

 

 

The following diagram explains the system of three machines in series. 

 

 

 

 

 

5.2. NOTATIONS  

h1 : Cost per unit time of holding per unit of reserve inventory S1. 

h2; Cost per unit time of holding per unit of reserve inventory S2. 

d1 : Cost per unit time of idle time of machine M2. 

d2 : Cost per unit time of idle time of machine M3.  

µ : Mean time interval between successive breakdowns of machine M1 , assuming exponential 

distributions of inter-arrival times.  

t : Continuous random variable denoting the repair time of M1  with probability density function g(.) 

and CDF G (.).  
r1 : Constant consumption rate per unit time of machine M2 from  the reserve S1. 

r2 : Constant consumption rate per unit time of machine M3 from the reserve S2. 

S1 : Reserve inventory between M1 and M2. 

S2 : Reserve inventory between M2 and M3. 

𝑆1̂:Optimum reserve inventory between M1 and M2. 
𝑆2̂:Optimum reserve inventory between M2 and M3. 
T : Random variable denoting the idle time of M2 and M3 

 

Main Results  

          This Model is a improvised one over the previous model. In this Model, it is assumed that the 

repair time of machine M1 is a random variable and it undergoes change of distribution property in the  

sense that the repair time changes its probability distribution after a certain change point (truncation 

point).In doing so, it is assumed that before the truncation point the repair time distribution is 

exponential and it changes to Erlang(2) after the truncation point. 

Hence, 

𝑔(𝑡) = {
𝑔1(𝑡),   𝑡 ≤ 𝑥0
𝑔2(𝑡),   𝑡 > 𝑥0

 

𝑔2(𝑡) = 𝐺1(𝑥0). 𝑔2(𝑡 − 𝑥0) 

𝑔(𝑡) = {
𝑔1(𝑡) = 𝜃1𝑒

−𝜃1𝑡                                  , 𝑖𝑓 𝑡 ≤ 𝑋0
𝑔2(𝑡) = 𝑒−𝜃1𝑥0𝜃2

2(𝑡 − 𝑥0)𝑒
−𝜃2(𝑡−𝑥0)  , 𝑖𝑓  𝑡 > 𝑋0
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If   𝑋0 is a random variable denoting that truncation point   and it is assumed to be followed as 

exponential with parameter 𝜆, then the probability density function of the repair time can be written as 

𝑔(𝑡) = 𝑔1(𝑡)𝑃[𝑡 ≤ 𝑥0]+𝑔2(𝑡)𝑃[𝒕 > 𝒙𝟎]                                                                    (1) 

𝑔(𝑡) = 𝜃1𝑒
−𝜃1𝑡𝑒−𝜆𝑡 +∫ 𝑒−𝜃1𝑥0𝜃2

2(𝑡 − 𝑥0)𝑒
−𝜃2(𝑡−𝑥0)

𝑡

0

𝜆𝑒−𝜆𝑥0𝑑𝑥0 

Hence, it may be observed that the expected idle time of the machine M2 and M3 are 

𝑇𝑀2=

{
 

 0                , 𝑖𝑓𝑡 ≤
𝑆1
𝑟1

𝑡 −
𝑆1
𝑟1
      , 𝑖𝑓𝑡 >

𝑆1
𝑟1

 

𝑇𝑀3= {

𝑡 −
𝑠1
𝑟1
−
𝑠2
𝑟2
,             𝑡 > (

𝑠1
𝑟1
+
𝑠2
𝑟2
)

0,                                  𝑡 ≤ (
𝑠1
𝑟1
+
𝑠2
𝑟2
)
 

Thus, the total expected cost is given as 

𝐸(𝐶) = ℎ1𝑆1 + ℎ2𝑆2 +
𝑑1

𝜇
{𝐸(𝑇𝑀2)} +

𝑑2

𝜇
 {𝐸(𝑇𝑀3)}                                (2)                                         

𝐸(𝑇𝑀2) = ∫ (𝑡 −
𝑠1

𝑟1
)

∞
𝑠1
𝑟1

𝑔(𝑡)𝑑𝑡 

=∫ (𝑡 −
𝑠1

𝑟1
)

∞
𝑠1
𝑟1

{𝜃1𝑒
−𝜃1𝑡𝑒−𝜆𝑡 + ∫ 𝑒−𝜃1𝑥0𝜃2

2(𝑡 − 𝑡0)𝑒
−𝜃2(𝑡−𝑥0)

𝑡

0
𝜆𝑒−𝜆𝑥0𝑑𝑥0} 𝑑𝑡 

𝐸(𝑇𝑀2) = 𝐼1 +
𝜆𝜃2

2

(𝜆 + 𝜃1 − 𝜃2)
∫ 𝑡 (𝑡 −

𝑠1
𝑟1
)

∞

𝑠1
𝑟1

𝑒−𝜃2𝑡𝑑𝑡 +
𝜆𝜃2

2

(𝜆 + 𝜃1 − 𝜃2)2
∫ (𝑡 −

𝑠1
𝑟1
) 𝑒−𝑡(𝜆+𝜃1)𝑑𝑡

∞

𝑠1
𝑟1

 

−
𝜆𝜃2

2

(𝜆+𝜃1−𝜃2)2
∫ (𝑡 −

𝑠1

𝑟1
) 𝑒−𝑡𝜃2𝑑𝑡

∞
𝑠1
𝑟1

  

𝐸(𝑇𝑀2) = 𝐼1 + 𝐼2 + 𝐼3 − 𝐼4                                                                     (3)
 

𝐸(𝑇𝑀3) = ∫ (𝑡 −
𝑠1
𝑟1
−
𝑠2
𝑟2
) 𝑔(𝑡)𝑑𝑡

∞

𝑠1
𝑟1
+
𝑠2
𝑟2

 

𝐸(𝑇𝑀3) = ∫ (𝑡 −
𝑠1
𝑟1
−
𝑠2
𝑟2
)

∞

𝑠1
𝑟1
+
𝑠2
𝑟2

{𝜃1𝑒
−𝑡(𝜆+𝜃1) + 𝜃2

2𝜆𝑒−𝑡𝜃2∫ (𝑡 − 𝑡0)𝑒
−𝑥0(𝜆+𝜃1−𝜃2)𝑑𝑥0

𝑡

0

} 𝑑𝑡 

𝐸(𝑇𝑀3) = 𝐼5 +
𝜃2
2𝜆

(𝜆 + 𝜃1 − 𝜃2)2
∫ (𝑡 −

𝑠1
𝑟1
−
𝑠2
𝑟2
)

∞

𝑠1
𝑟1
+
𝑠2
𝑟2

𝑒−𝑡(𝜆+𝜃1)𝑑𝑡

−
𝜃2
2𝜆

(𝜆 + 𝜃1 − 𝜃2)2
∫ (𝑡 −

𝑠1
𝑟1
−
𝑠2
𝑟2
)

∞

𝑠1
𝑟1
+
𝑠2
𝑟2

𝑒−𝑡𝜃2𝑑𝑡                                                                      

𝐸(𝑇𝑀3) = 𝐼5 + 𝐼6 − 𝐼7                                                                         (4) 

It can be rewritten as  

𝐸(𝐶) = h1𝑆1 + h2𝑆2 +
𝑑1
𝜇
{𝐸(𝑇𝑀2)} +

𝑑2
𝜇
{𝐸(𝑇𝑀3)} 

𝑑𝐸(𝐶)

𝑑𝑆1
= 0 

⇒ h1 +
𝑑1
𝜇
{
𝑑𝐸(𝑇𝑀2)

𝑑𝑆1
} +

𝑑2
𝜇
{
𝑑𝐸(𝑇𝑀3)

𝑑𝑆1
} = 0

 

⇒ h1 +
𝑑1

𝜇
{
𝑑𝐼1

𝑑𝑆1
+

𝑑𝐼2

𝑑𝑆1
+

𝑑𝐼3

𝑑𝑆1
−

𝑑𝐼4

𝑑𝑆1
} +

𝑑2

𝜇
{
𝑑𝐼5

𝑑𝑆1
+

𝑑𝐼6

𝑑𝑆1
−

𝑑𝐼7

𝑑𝑆1
} = 0                  (5) 

From (3) 
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𝑑𝐸(𝑇𝑀2)

𝑑𝑆1
=
𝑑𝐼1
𝑑𝑆1

+
𝑑𝐼2
𝑑𝑆1

+
𝑑𝐼3
𝑑𝑆1

−
𝑑𝐼4
𝑑𝑆1 𝑑𝐼1

𝑑𝑆1
=

𝑑

𝑑𝑆1
∫ 𝜃1 (𝑡 −

𝑠1
𝑟1
)

∞

𝑠1
𝑟1

𝑒−𝑡(𝜆+𝜃1)𝑑𝑡 

𝑑𝐼1

𝑑𝑆1
= −

𝜃1𝑒
−
𝑠1
𝑟1
(𝜆+𝜃1)

𝑟1(𝜆+𝜃1)
                                                                               (6) 

𝑑𝐼2
𝑑𝑆1

=
𝑑

𝑑𝑆1
(

𝜆𝜃2
2

𝜆 + 𝜃1 − 𝜃2
)∫ 𝑡 (𝑡 −

𝑠1
𝑟1
)

∞

𝑠1
𝑟1

𝑒−𝜃2𝑡𝑑𝑡 

𝑑𝐼2

𝑑𝑆1
= −

𝜆𝜃2
2

𝑟1(𝜆+𝜃1−𝜃2)
{(

𝑠1

𝑟1𝜃2
𝑒
−𝜃2

𝑠1
𝑟1 +

1

𝜃2
2 𝑒

−𝜃2
𝑠1
𝑟1)}                                       (7)

 𝑑𝐼3
𝑑𝑆1

=
𝑑

𝑑𝑠1

𝜆𝜃2
2

(𝜆 + 𝜃1 − 𝜃2)2
∫ (𝑡 −

𝑠1
𝑟1
)

∞

𝑠1
𝑟1

𝑒−𝑡(𝜆+𝜃1)𝑑𝑡 

𝑑𝐼3

𝑑𝑆1
= −

𝜆𝜃2
2

𝑟1(𝜆+𝜃1−𝜃2)2
[
𝑒
−
𝑠1
𝑟1
(𝜆+𝜃1)

(𝜆+𝜃1)
]                                                                (8) 

𝑑𝐼4
𝑑𝑆1

=
𝜆𝜃2

2

(𝜆 + 𝜃1 − 𝜃2)2
∫ (𝑡 −

𝑠1
𝑟1
) 𝑒−𝜃2𝑡𝑑𝑡

∞

𝑠1
𝑟1

 

𝑑𝐼4

𝑑𝑆1
= −

𝜆𝜃2
2

(𝜆+𝜃1−𝜃2)2
𝑒
−
𝑠1
𝑟1
𝜃2

𝑟1𝜃2
                                                                           (9) 

Hence, 

𝑑𝐸(𝑇𝑀2)

𝑑𝑆1
= −𝜃1

𝑒
−
𝑠1
𝑟1
(𝜆+𝜃1)

𝑟1(𝜆 + 𝜃1)
−

𝜆𝜃2
2 𝑠1
𝑟1
𝑒
−
𝑠1
𝑟1
𝜃2

𝑟1𝜃2(𝜆 + 𝜃1 − 𝜃2)
−

𝜆𝜃2
2𝑒

−
𝑠1
𝑟1
𝜃2

𝑟1𝜃2
2(𝜆 + 𝜃1 − 𝜃2)

−
𝜆𝜃2

2𝑒
−
𝑠1
𝑟1
(𝜆+𝜃1)

𝑟1(𝜆 + 𝜃1 − 𝜃2)2(𝜆 + 𝜃1)
 

+
𝜆𝜃2

2

(𝜆 + 𝜃1 − 𝜃2)2𝑟1𝜃2
𝑒
−
𝑠1
𝑟1
𝜃2                                               (𝟏𝟎)

 
From (4) 

𝑑𝐼5
𝑑𝑆1

=
𝑑

𝑑𝑠1
(𝜃1∫ (𝑡 −

𝑠1
𝑟1
−
𝑠2
𝑟2
)

∞

𝑠1
𝑟1
+
𝑠2
𝑟2

𝑒−𝑡(𝜆+𝜃1)𝑑𝑡) 

𝑑𝐼5

𝑑𝑆1
= −

𝜃1𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟1(𝜆+𝜃1)
                                                                       

𝑑𝐼6

𝑑𝑆1
=

𝑑

𝑑𝑠1
(

𝜃2
2𝜆

(𝜆+𝜃1−𝜃2)2
∫ (𝑡 −

𝑠1

𝑟1
−
𝑠2

𝑟2
)

∞
𝑠1
𝑟1
+
𝑠2
𝑟2

𝑒−𝑡(𝜆+𝜃1)𝑑𝑡) 

𝑑𝐼6

𝑑𝑆1
=

−𝜃2
2𝜆𝑒

−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟1(𝜆+𝜃1−𝜃2)2(𝜆+𝜃1)
                                                                         

𝑑𝐼7
𝑑𝑆1

=
𝜃2

2𝜆

(𝜆 + 𝜃1 − 𝜃2)2
∫ (𝑡 −

𝑠1
𝑟1
−
𝑠2
𝑟2
)

∞

𝑠1
𝑟1
+
𝑠2
𝑟2

𝑒−𝜃2𝑡𝑑𝑡 

𝑑𝐼7

𝑑𝑆1
=

𝜃2
2𝜆

(𝜆+𝜃1−𝜃2)2
𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)𝜃2

𝑟1𝜃2
                                                                 

Hence, 
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𝑑𝐸(𝑇𝑀3)

𝑑𝑆1
= −

𝜃1𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟1(𝜆 + 𝜃1)
−

𝜃2
2𝜆𝑒

−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟1(𝜆 + 𝜃1 − 𝜃2)
2(𝜆 + 𝜃1)

 

+
𝜃2

2𝜆

(𝜆 + 𝜃1 − 𝜃2)2
𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)𝜃2

𝑟1𝜃2
                                                          (𝟏𝟏)

 𝑑𝐸(𝐶)

𝑑𝑆1
= 0 

⇒ h1 +
𝑑1
𝜇
{
𝑑𝐸(𝑇𝑀2)

𝑑𝑆1
} +

𝑑2
𝜇
{
𝑑𝐸(𝑇𝑀3)

𝑑𝑆1
} = 0                                                     (𝟏𝟐)

 
Substituting (10) and (11) in (12) the resultant equation is 

= ℎ1 +
𝑑1
𝜇
{−𝜃1

𝑒
−
𝑠1
𝑟1
(𝜆+𝜃1)

𝑟1(𝜆 + 𝜃1)
−

𝜆𝜃2
2 𝑠1
𝑟1
𝑒
−
𝑠1
𝑟1
𝜃2

𝑟1𝜃2(𝜆 + 𝜃1 − 𝜃2)
−

𝜆𝜃2
2𝑒

−
𝑠1
𝑟1
𝜃2

𝑟1𝜃2
2(𝜆 + 𝜃1 − 𝜃2)

−
𝜆𝜃2

2𝑒
−
𝑠1
𝑟1
(𝜆+𝜃1)

𝑟1(𝜆 + 𝜃1 − 𝜃2)2(𝜆 + 𝜃1)
 +

𝜆𝜃2
2

(𝜆 + 𝜃1 − 𝜃2)2𝑟1𝜃2
𝑒
−
𝑠1
𝑟1
𝜃2}

+
𝑑2
𝜇
{−

𝜃1𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟1(𝜆 + 𝜃1)
−

𝜃2
2𝜆𝑒

−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟1(𝜆 + 𝜃1 − 𝜃2)2(𝜆 + 𝜃1)
 

+
𝜃2

2𝜆

(𝜆 + 𝜃1 − 𝜃2)2
𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)𝜃2

𝑟1𝜃2
} = 0                                                 (𝟏𝟑) 

And in similar way,     
𝒅𝑬(𝑪)

𝒅𝑺𝟐
= 𝟎 

⇒ h2 +
𝑑1

𝜇
{
𝑑𝐸(𝑇𝑀2)

𝑑𝑆2
} +

𝑑2

𝜇
{
𝑑𝐸(𝑇𝑀3)

𝑑𝑆2
} = 0                                                         (14) 

⇒ h2 +
𝑑1

𝜇
{
𝑑𝐼1

𝑑𝑆2
+

𝑑𝐼2

𝑑𝑆2
+

𝑑𝐼3

𝑑𝑆2
−

𝑑𝐼4

𝑑𝑆2
} +

𝑑2

𝜇
{
𝑑𝐼5

𝑑𝑆2
+

𝑑𝐼6

𝑑𝑆2
−

𝑑𝐼7

𝑑𝑆2
} = 0                      (15) 

Since S2 is not involved  in 
𝑑𝐸(𝑇𝑀2)

𝑑𝑆2
 

Hence,    
𝑑𝐸(𝑇𝑀2)

𝑑𝑆2
 =0                                                                                     (16)                         

𝑑𝐸(𝑇𝑀3)

𝑑𝑆2
=

𝑑𝐼5

𝑑𝑆2
+

𝑑𝐼6

𝑑𝑆2
−

𝑑𝐼7

𝑑𝑆2
                                                                       (17)                                                                                     

𝑑𝐼5
𝑑𝑆2

=
𝑑

𝑑𝑠2
(𝜃1∫ (𝑡 −

𝑠1
𝑟1
−
𝑠2
𝑟2
)

∞

𝑠1
𝑟1
+
𝑠2
𝑟2

𝑒−𝑡(𝜆+𝜃1)𝑑𝑡) 

𝑑𝐼5

𝑑𝑆2
= −

𝜃1𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟2(𝜆+𝜃1)
                                                                    

 
𝑑𝐼6

𝑑𝑆2
=

𝑑

𝑑𝑠2
(

𝜃2
2𝜆

(𝜆+𝜃1−𝜃2)2
∫ (𝑡 −

𝑠1

𝑟1
−
𝑠2

𝑟2
)

∞
𝑠1
𝑟1
+
𝑠2
𝑟2

𝑒−𝑡(𝜆+𝜃1)𝑑𝑡) 

=
𝑑𝐼6

𝑑𝑆2
=

−𝜃2
2𝜆𝑒

−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟2(𝜆+𝜃1−𝜃2)2(𝜆+𝜃1)
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𝑑𝐼7
𝑑𝑆2

=
𝑑

𝑑𝑠2
(

𝜃2
2𝜆

(𝜆 + 𝜃1 − 𝜃2)
2
∫ (𝑡 −

𝑠1
𝑟1
−
𝑠2
𝑟2
)

∞

𝑠1
𝑟1
+
𝑠2
𝑟2

𝑒−𝜃2𝑡𝑑𝑡) 

𝑑𝐼7

𝑑𝑆2
= −

𝜃2
2𝜆

(𝜆+𝜃1−𝜃2)2
𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)𝜃2

𝑟2𝜃2
                                                                     

𝑑𝐸(𝑇𝑀3)

𝑑𝑆2
=
𝑑𝐼5
𝑑𝑆1

+
𝑑𝐼6
𝑑𝑆1

−
𝑑𝐼7
𝑑𝑆1

 

Hence, 

𝑑𝐸(𝑇𝑀3)

𝑑𝑆2
= −

𝜃1𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟2(𝜆+𝜃1)
−

𝜃2
2𝜆𝑒

−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟2(𝜆+𝜃1−𝜃2)2(𝜆+𝜃1)
 +

𝜃2
2𝜆

(𝜆+𝜃1−𝜃2)2
𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)𝜃2

𝑟2𝜃2
    

                         (18)

 

Substituting (16) and (18) in (14) the resultant equation is

 

⇒ h2 +
𝑑1
𝜇
{0} +

𝑑2
𝜇
{−

𝜃1𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟2(𝜆 + 𝜃1)
−

𝜃2
2𝜆𝑒

−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)(𝜆+𝜃1)

𝑟2(𝜆 + 𝜃1 − 𝜃2)2(𝜆 + 𝜃1)

+
𝜃2

2𝜆

(𝜆 + 𝜃1 − 𝜃2)2
𝑒
−(
𝑠1
𝑟1
+
𝑠2
𝑟2
)𝜃2

𝑟2𝜃2
} = 0                                                     (𝟏𝟗) 

Solving the (13) and (19) the resultant equation is 

 

ℎ1𝑟1 − ℎ2𝑟2 +
𝑑1

𝜇
{−𝜃1

𝑒
−
𝑠1
𝑟1
(𝜆+𝜃1)

(𝜆+𝜃1)
−
𝜆𝜃2

2𝑠1
𝑟1
𝑒
−
𝑠1
𝑟1
𝜃2

𝜃2(𝜆+𝜃1−𝜃2)
−

𝜆𝜃2
2𝑒

−
𝑠1
𝑟1
𝜃2

𝜃2
2(𝜆+𝜃1−𝜃2)

−
𝜆𝜃2

2𝑒
−
𝑠1
𝑟1
(𝜆+𝜃1)

(𝜆+𝜃1−𝜃2)2(𝜆+𝜃1)
 +

𝜆𝜃2
2

(𝜆+𝜃1−𝜃2)2𝜃2
𝑒
−
𝑠1
𝑟1
𝜃2}                                 (20) 

    Using the equations (19) and (20) numerically by taking fixed values for h1, h2, r1, r2, d1, d2,, 𝜇, 𝜆,  

𝜃1 𝑎𝑛𝑑 𝜃2 the optimal value of    𝑆1̂  and  𝑆2̂ can be obtained. 

 Numerical Illustrations 

The variations, in the values of  𝑆1̂ and  𝑆2̂, consequent to the changes in  the parameter  h1, h2, 

r1, r2, d1, d2, , , 𝜃1 and 𝜃2 have been studied by taking the numerical illustrations. The tables and the 

corresponding graphs are given below. 

 Case (i) 

Since the holding cost h1 is related to S1, for the fixed values of 2 10h = , 1 50d = , 2 60d = , 

1 2r = , 2 2r = , 𝜃1,=1.2, 𝜃2,=1.2 1.0 =  and 1 = . The variations, in the values of the optimal reserve 

inventory  𝑆1̂ for various values of h1, is shown in the table. 

The Behaviour of optimal reserve inventory for the changes in the  

value of holding cost of M1 

h1 29 30 31 32 

 𝑆1̂ 0.4659 0.3776 0.2941 0.2149 
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 The Behaviour of optimal reserve inventory for the changes in the 

values of holding cost of M1 

 

Case (ii) 

The fixed values of ,
 
 1 50d = , 2 60d = , 1 2r = , 2 2r = , 𝜃1,=1.2, 𝜃2,=1.2, 1.0 =  and 

1 = , and the variations, in the values of the optimal reserve inventory  𝑆2̂ for various values of h2 are 

shown in the table. 

 The Behaviour of optimal reserve inventory for the changes in the  

value of holding cost of M2 

h2 9 10 11 12 

 𝑆2̂ 1.8564 1.5752 1.3094 1.0547 

 

 
The Behaviour of optimal reserve inventory for the changes in the 

value of holding cost of M2 

1 30h =
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Case (iii) 

The fixed values of 1 30h = , 2 10h = , 2 60d = , 1 2r = , 2 2r = , 𝜃1,=1.2, 𝜃2,=1.2, 1.0 =  and 

1 = , and the variations, in the values of the optimal reserve inventory  𝑆1̂ and  𝑆2̂ for various values 

of d1, are shown in the table. 

 

The Behaviour of optimal reserve inventory for the changes in the  

values of idle time cost of Machine M2 

d1 50 60 70 80 

 𝑆1̂ 0.3776 0.694 0.9669 1.2067 

 𝑆2̂ 1.5752 1.2588 0.9859 0.7461 

 

 
 The Behaviour of optimal reserve inventory for the changes in the  

values of idle time cost of Machine M2 

Case (iv) 

The fixed values of 1 30h = , 2 10h = , 1 50d = , 1 2r = , 2 2r = , 𝜃1,=1.2, 𝜃2,=1.2, 1.0 =  and 

1 = , and the variations in the values of the optimal reserve inventory  𝑆2̂ for various values of d2, are 

shown in the table. 

 

 The Behaviour of optimal reserve inventory for the changes in the  

value of idle time of M3 

d2 60 70 80 90 

 𝑆2̂ 1.5752 1.8648 2.1179 2.3426 
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 The Behaviour of optimal reserve inventory for the changes in the 

value of idle time of M3 

Case (v) 

The fixed values of 1 30h = , 2 10h = , 1 50d = , 2 60d = , 1 2r = , 2 2r = , 𝜃1,=1.2, 𝜃2,=1.2  and 

1 = , and the variations, in the values of the optimal reserve  inventory  𝑆1̂ and  𝑆2̂ for various values 

of  are shown in the table. 

 

 The Behaviour of optimal reserve inventory for the changes in the  

value of mean interval breakdown of M1 

µ 0.9 1.0 1.1 1.2 

 𝑆1̂ 0.5596 0.3776 0.2149 0.0682 

 𝑆2̂ 1.5909 1.5752 1.5604 1.5461 

 

 
TheBehaviour of optimal reserve inventory for the changes in the 

value of mean interval breakdown of M1 
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Conclusions 

From the tables and graphs, it is observed that 

i) As the inventory holding cost ‘h1’ increases, the value of  𝑆1̂ decreases suggesting a smaller  reserve 

between the Machines M1 and M2. 

ii) If the inventory holding cost ‘h2’ increases, the value of  𝑆2̂ will decreases to suggest smaller 

reserve between the Machines M2 and M3. 

iii) If the d1 of the idle time cost of Machine M2 increases, a higher level o 𝑆1̂f  is suggested. However, 

the  𝑆2̂ is found to be decreased due to the reason that the optimal reserve  𝑆2̂ is more, as it supports 

the Machines M2 and M3. 

iv) As the d2 idle time cost of inventory increases a larger inventory of  𝑆1̂ is suggested. 

v) As the parameter µ, the mean inter-arrival time between successive breakdowns of Machines M1 is in 

increase then the optimal reserve inventories are in decrease. It suggested to have smaller 

inventories of  𝑆1̂ and  𝑆2̂ 
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